home *** CD-ROM | disk | FTP | other *** search
- C
- C ..................................................................
- C
- C SUBROUTINE POINT
- C
- C PURPOSE
- C TO COMPUTE THE POINT-BISERIAL CORRELATION COEFFICIENT
- C BETWEEN TWO VARIABLES, WHEN ONE OF THE VARIABLES IS A BINARY
- C VARIABLE AND ONE IS CONTINUOUS. THIS IS A SPECIAL CASE OF
- C THE PEARSON PRODUCT-MOMENT CORRELATION COEFFICIENT.
- C
- C USAGE
- C CALL POINT (N,A,B,HI,ANS,IER)
- C
- C DESCRIPTION OF PARAMETERS
- C N - NUMBER OF OBSERVATIONS
- C A - INPUT VECTOR OF LENGTH N CONTAINING THE CONTINUOUS
- C VARIABLE
- C B - INPUT VECTOR OF LENGTH N CONTAINING THE DICHOTOMOUS
- C (BINARY) VARIABLE
- C HI - INPUT NUMERICAL CODE TO INDICATE THE HIGHER CATEGORY.
- C ANY VALUE OF THE BINARY VARIABLE NOT LESS THAN HI WILL
- C BE CLASSIFIED IN THE HIGHER OF THE TWO CATEGORIES.
- C ANS - OUTPUT VECTOR OF LENGTH 9 CONTAINING THE FOLLOWING
- C RESULTS
- C ANS(1)- MEAN OF VARIABLE A
- C ANS(2)- STANDARD DEVIATION OF VARIABLE A
- C ANS(3)- NUMBER OF OBSERVATIONS IN THE HIGHER
- C CATEGORY OF VARIABLE B
- C ANS(4)- NUMBER OF OBSERVATIONS IN THE LOWER
- C CATEGORY OF VARIABLE B
- C ANS(5)- MEAN OF VARIABLE A FOR ONLY THOSE
- C OBSERVATIONS IN THE HIGHER CATEGORY OF
- C VARIABLE B
- C ANS(6)- MEAN OF VARIABLE A FOR ONLY THOSE
- C OBSERVATIONS IN THE LOWER CATEGORY OF
- C VARIABLE B
- C ANS(7)- POINT-BISERIAL CORRELATION COEFFICIENT
- C ANS(8)- T-TEST FOR THE SIGNIFICANCE OF THE
- C DIFFERENCE BETWEEN THE MEANS OF VARIABLE A
- C FOR THE HIGHER AND LOWER CATEGORIES
- C RESPECTIVELY.
- C ANS(9)- DEGREES OF FREEDOM FOR THE T-TEST
- C IER- 1, IF ALL ELEMENTS OF B ARE NOT LESS THAN HI.
- C -1, IF ALL ELEMENTS OF B ARE LESS THAN HI.
- C 0, OTHERWISE. IF IER IS NON-ZERO, ANS(I), I=5,...,9,
- C IS SET TO 10**75.
- C
- C REMARKS
- C THE SYMBOLS USED TO IDENTFY THE VALUES OF THE TWO CATEGORIES
- C OF VARIABLE B MUST BE NUMERIC. ALPHABETIC OR SPECIAL
- C CHARACTERS CANNOT BE USED.
- C THE T-TEST(ANS(8)) IS A TEST OF WHETHER THE POINT-BISERIAL
- C COEFFICIENT DIFFERS SIGNIFICANTLY FROM ZERO.
- C
- C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
- C NONE
- C
- C METHOD
- C REFER TO P. HORST, 'PSYCHOLOGICAL MEASUREMENT AND
- C PREDICTION', P. 91 (WADSWORTH, 1966).
- C
- C ..................................................................
- C
- SUBROUTINE POINT (N,A,B,HI,ANS,IER)
- C
- DIMENSION A(1),B(1),ANS(1)
- C
- C COMPUTE MEAN AND STANDARD DEVIATION OF VARIABLE A
- C
- IER=0
- SUM=0.0
- SUM2=0.0
- DO 10 I=1,N
- SUM=SUM+A(I)
- 10 SUM2=SUM2+A(I)*A(I)
- FN=N
- ANS(1)=SUM/FN
- ANS(2)=(SUM2-ANS(1)*SUM)/(FN-1.0)
- ANS(2)= SQRT(ANS(2))
- C
- C FIND NUMBERS OF CASES IN THE HIGHER AND LOWER CATEGORIES
- C
- P=0.0
- SUM=0.0
- SUM2=0.0
- DO 30 I=1,N
- IF(B(I)-HI) 20, 25, 25
- 20 SUM2=SUM2+A(I)
- GO TO 30
- 25 P=P+1.0
- SUM=SUM+A(I)
- 30 CONTINUE
- C
- Q=FN-P
- ANS(3)=P
- ANS(4)=Q
- IF (P) 35,35,40
- 35 IER=-1
- GO TO 50
- 40 ANS(5)=SUM/P
- IF (Q) 45,45,60
- 45 IER=1
- 50 DO 55 I=5,9
- 55 ANS(I)=1.E38
- GO TO 65
- 60 ANS(6)=SUM2/Q
- C
- C COMPUTE THE POINT-BISERIAL CORRELATION
- C
- R=((ANS(5)-ANS(1))/ANS(2))* SQRT(P/Q)
- ANS(7)=R
- C
- C COMPUTE T RATIO USED TO TEST THE HYPOTHESIS OF ZERO CORRELATION
- C
- T=R* SQRT((FN-2.0)/(1.0-R*R))
- ANS(8)=T
- C
- C COMPUTE DEGREES OF FREEDOM
- C
- ANS(9)=FN-2
- C
- 65 RETURN
- END
- (I)
- 30 CONTINUE
- C
- Q=FN-P
- ANS(3)=P
- ANS(4)=Q
- IF (P) 35,35,40
- 35 IER=-1
- GO